نموذج الإنحدار المتعدد Multiple Regression Model

- نموذج الإنحدار المتعدد هو عبارة عن نموذج يتكون من متغير تابع وأكثر من متغير مستقل واحد.
 - $\mathbf{Y}_{i} = \alpha + \beta_{1} \mathbf{X}_{1i} + \beta_{2} \mathbf{X}_{2i} + \mu_{i} \quad \blacksquare$
 - i = 1, 2, ..., N
 - _ حيث أن:

Y = القيمة الفعلية للمتغير التابع ،

القيمة الفعلية للمتغير المستقل الأول X_1

القيمة الفعلية للمتغير المستقل الثاني ، X_2

μ = القيمة الفعلية لحد الخطأ ،

 α = الحد الثابت ،

 \mathbf{Y} ، \mathbf{X}_1 ، وهو عبارة عن ميل العلاقة بين \mathbf{X}_1 ، \mathbf{X}_1 ، وهو عبارة عن ميل العلاقة بين \mathbf{Y} ، \mathbf{X}_2 ، وهو عبارة عن ميل العلاقة بين \mathbf{X}_2 = معامل \mathbf{X}_2 ، وهو عبارة عن ميل العلاقة بين \mathbf{X}_2 = عدد المشاهدات ،

عبارة عن معاملات انحدار النموذج β_2 ، β_1 ، α

إفتراضات نموذج الإنحدار الخطي المتعدد

- 1. إن المتغير التابع (Y) يكون دالة خطية في المتغيرات المستقلة (X2, X1).
- 2. إن القيمة المتوقعة لحد الخطأ تكون مساوية للصفر.
 - 3. إن تباين حد الخطأ يكون ثابت ـ
- 4. إن حد الخطأ لمشاهدة ما لا يرتبط بحد الخطأ لمشاهدة أخرى
 - 5. إستقلال حد الخطأ عن المتغيرات المستقلة .
 - 6. إن حد الخطأ موزع توزيعاً طبيعياً.
 - 7. إن درجات الحرية يجب أن تكون موجبة .

إفتراضات نموذج الإنحدار الخطي المتعدد

- 8. عدم وجود علاقة خطية تامة بين المتغيرات المستقلة ، ويترتب على إسقاط هذا الإفتراض حدوث مشكلة الإزدواج الخطي Multicollinearity .
- إن المتغيرات المستقلة تكون متغيرات غير عشوائية ويكون لها قيم ثابتة ، ويترتب على إسقاط هذا الإفتراض حدوث ثلاثة مشاكل قياسية:

أ- وجود أخطأ في قياس المتغيرات المستقلة

ب- إرتباط مشاهدات المتغير التابع بعضها بالبعض الآخر ، ويحدث ذلك عندما يتم استخدام متغير تابع ذو فترة إبطاء كمتغير مستقل ج- تقدير معادلة آنية وهي الحالة التي تتحدد فيها المتغيرات التابعة بواسطة التفاعل الآني لعلاقات عديدة .

\overline{R}^2 تقدير معامل التحديد المتعدد المُعدل Adjusted \mathbb{R}^2

- يلاحظ أن إضافة متغير مستقل (أو متغيرات مستقلة) في النموذج المقدر يؤدي دائماً إلى زيادة قيمة R²
- ويرجع ذلك إلى أن إضافة متغير مستقل جديد سوف يؤدي إلى زيادة القيمة الموجودة في البسط في معادلة R² بينما يظل المقام كما هو.

$$R^{2} = \frac{\hat{\beta}_{1} \sum y_{i} x_{1i} + \hat{\beta}_{2} \sum y_{i} x_{2i}}{\sum y_{i}^{2}}$$

- ولهذا يجب تعديل R² وذلك بالأخذ في الاعتبار درجات الحرية التي سوف تنقص بسبب إضافة متغيرات مستقلة جديدة في النموذج .
 - یتم تقدیر $\overline{R^2}$ کما یلی:

$$\overline{R}^2 = 1 - (1 - R^2) \frac{N - 1}{DF}$$

 $\overline{R}^{2} = 1 - \left[\frac{\sum e_{i}^{2} / DF}{\sum y_{i}^{2} / N - 1} \right]$

وعليه يتضح ما يلي:

 ${f R}^2$ يمكن أن تكون أقل أو تساوي قيمة ${ar R}^2$ إن قيمة ${ar R}^2$ ${ar R}^2 \leq R^2$

 ${\mathbb R}^2$ إن قيمة ${\mathbb R}^2$ يمكن أن تكون سالبة بينما قيمة ${\mathbb R}^2$ لايمكن أن تكون كذلك .

تقدير معاملات الإرتباط الجزئية

يقيس معامل الارتباط الجزئي درجة العلاقة بين متغيرين مع ثبات باقى المتغيرات محل الدراسة .

$$r_{YX_{1} \cdot X_{2}} = \frac{r_{YX_{1}} - r_{YX_{2}} r_{X_{1}X_{2}}}{\sqrt{(1 - r_{YX_{2}}^{2})(1 - r_{X_{1}X_{2}}^{2})}}$$

$$r_{YX_{2} \cdot X_{1}} = \frac{r_{YX_{2}} - r_{YX_{1}} r_{X_{1}X_{2}}}{\sqrt{(1 - r_{YX_{1}}^{2})(1 - r_{X_{1}X_{2}}^{2})}}$$

$$r_{X_{1}X_{2} \cdot Y} = \frac{r_{X_{1}X_{2}} - r_{YX_{1}} r_{YX_{2}}}{\sqrt{(1 - r_{YX_{1}}^{2})(1 - r_{YX_{2}}^{2})}}$$

السنة	$\mathbf{Y_i}$	$\mathbf{X}_{1\mathbf{i}}$	$\mathbf{X}_{2\mathbf{i}}$
1972	55	19	49
1973	65	17	58
1974	80	21	55
1975	75	17	58
1976	70	19	55
1977	50	18	49
1978	60	20	46
1979	65	21	46

SUMMARY OUTPUT

Regression Statistics				
Multiple R	0.92			
R Square	0.85			
Adjusted R Square	0.79			
Standard Error	4.58			
Observations	8			

ANOVA

SOV	df	SS	MS	F	Sig F
Regression	2	595.19	297.59	14.20	0.009
Residual	5	104.81	20.96		
Total	7	700			

	Coefficien ts	Standard Error	t Stat	P- value	Lower 95%	Upper 95%
Intercept	-146.25	41.78	-3.50	0.017	-253.65	-38.85
X _{1i}	5.13	1.32	3.87	0.012	1.72	8.53
X _{2i}	2.19	0.42	5.23	0.003	1.11	3.27

مصفوفة الإرتباط Correlation Matrix

	Y_i	X_{1i}	X_{2i}
Y _i	1		
X _{1i}	0.18	1	
X_{2i}	0.63	-0.58	1

$$r_{YX_{1} \cdot X_{2}} = \frac{r_{YX_{1}} - r_{YX_{2}} r_{X_{1}X_{2}}}{\sqrt{(1 - r_{YX_{2}}^{2})(1 - r_{X_{1}X_{2}}^{2})}} = \frac{(0.18) - [(0.63)(-0.58)]}{\sqrt{[1 - (0.63)^{2}][1 - (-0.58)^{2}]}} = 0.86$$

$$r_{YX_{2} \cdot X_{1}} = \frac{r_{YX_{2}} - r_{YX_{1}} r_{X_{1}X_{2}}}{\sqrt{(1 - r_{YX_{1}}^{2})(1 - r_{X_{1}X_{2}}^{2})}} = \frac{(0.63) - [(0.18)(-0.58)]}{\sqrt{[1 - (0.18)^{2}][1 - (-0.58)^{2}]}} = 0.92$$

$$r_{X_{1}X_{2} \cdot Y} = \frac{r_{X_{1}X_{2}} - r_{YX_{1}} r_{YX_{2}}}{\sqrt{(1 - r_{YX_{1}}^{2})(1 - r_{YX_{2}}^{2})}} = \frac{(-0.58) - [(0.18)(0.63)]}{\sqrt{[1 - (0.18)^{2}][1 - (0.63)^{2}]}} = -0.91$$