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Survival Analysis:

typically focuses on time to event data. In the
most general sense, it consists of techniques
for positive valued random variables




time to death
* time to onset (or relapse) of a disease
* length of stay in a hospital
e duration of a strike
e money paid by health insurance
e viral load measurements
e time to finishing a doctoral dissertation



SOME DEFINITIONS AND NOTATION

Failure time random variables are always non-
negative. That is, if we denote the failure time
by T, then T = O. T can either be discrete (taking
a finite set of values, e.g. al,a2,..., an)or
continuous (defined on (O, «)). A random
variable X is called a censored failure time
random variable if X = min(T, U), where U is a
nonnegative censoring variable.



SOME DEFINITIONS AND NOTATION

In order to define a failure time random
variable, we need: (1) an unambiguous time
origin (e.g. randomization to clinical trial,
purchase of car) (2) a time scale (e.g. real time
(days, years), mileage of a car) (3) definition of
the event (e.g. death, need a new car
transmission)



ILLUSTRATION OF SURVIVAL DATA

>. 4




THE ILLUSTRATION OF SURVIVAL DATA ON THE
PREVIOUS PAGE SHOWS SEVERAL FEATURES
WHICH ARE TYPICALLY

The illustration of survival data on the previous
page shows several features which are typically
encountered in analysis of survival data:
Individuals do not all enter the study at the same
time ¢ when the study ends, some individuals still
haven’t had the event yet ¢ other individuals drop
out or get lost in the middle of the study, and all
we know about them is the last time they were still
“free” of the event The first feature is referred to
as “staggered entry” The last two features relate to
“censoring” of the failure time events.



TYPES OF CENSORING:

* Right-censoring : only the r.v. Xi = min(Ti, Ui) is observed due

to - loss to follow-up - drop-out - study termination We call
this right-censoring because the true unobserved event is to
the right of our censoring time; i.e., all we know is that the
event has not happened at the end of follow-up. In addition to
observing Xi , we also get to see the failure indicator:

5 _ { 1 if T, < U,

: 0i T, =U;

Some software packages instead assume we have a censoring
indicator: 0if T, < U,
‘”_{1 if T, > U,

Right-censoring is the most common type of censoring assumption we will deal with in
survival analysis



e | eft-censoring Can only observe Yi = max(Ti,
Ui) and the failure indicators:

1 it U; <71,
01 U; >1;

0 =

e.g. (Miller) study of age at which African children learn a task.
Some already knew (left-censored), some learned during study
(exact), some had not yet learned by end of study (right-censored).

Interval-censoring
Observe (Li, Ri) where Ti € (Li, Ri) Ex. 1: Time to prostate cancer, observe |



Ex. 1: Time to prostate cancer, observe
longitudinal PSA measurements

Ex. 2: Time to undetectable viral load in AIDS
studies, based on measurements of viral load

taken at each clinic visit

Ex. 3: Detect recurrence of colon cancer after
surgery. Follow patients every 3 months after
resection of primary tumor.



INDEPENDENT VS INFORMATIVE CENSORING

We say censoring is independent (non-informative)
If Ui is independent of Ti .

- Ex. 1 If Ui is the planned end of the study (say, 2
years after the study opens), then it is usually
independent of the event times.

- Ex. 2 If Ui is the time that a patient drops out of
the study because he/she got much sicker and/or
had to discontinue taking the study treatment,
then Ui and Ti are probably not independent.



AN INDIVIDUAL CENSORED

An individual censored at U should be
representative of all subjects who survive to U.
This means that censoring at U could depend on
prognostic characteristics measured at baseline,
but that among all those with the same baseline
characteristics, the probability of censoring prior to
or at time U should be the same.

e (Censoring is considered informative if the
distribution of Ui contains any information about
the parameters characterizing the distribution of Ti



Suppose we have a sample of observations on
n people: (T1, U1),(T2, U2), ...,(Tn, Un) There
are three main types of (right) censoring times:
Type I: All the Ui 's are the same e.g. animal
studies, all animals sacrificed after 2 years °
Type ll: Ui = T(r) , the time of the rth failure. e.g.
animal studies, stop when 4/6 have tumors e
Type lll: the Ui 's are random variables, 0i 's are
failure indicators:

5 1 if T, < U
o > U



SOME EXAMPLE DATASET

Example A. Duration of nursing home stay (Morris
et al., Case Studies in Biometry, Ch 12) The
National Center for Health Services Research
studied 36 for-profit nursing homes to assess the
effects of different financial incentives on length of
stay. “Treated” nursing homes received higher per
diems for Medicaid patients, and bonuses for
Improving a patient’'s health and sending them
home. Study included 1601 patients admitted
between May 1, 1981 and April 30, 1982.



VARIABLES INCLUDE

LOS - Length of stay of a resident (in days)
AGE - Age of a resident

RX - Nursing home assignment (1:bonuses, O:no
bonuses)

GENDER - Gender (1:male, O:female)
MARRIED - (1: married, O:not married)
HEALTH - health status (2:second best, 5:worst)

CENSOR - Censoring indicator (1:censored,
O:discharged)
First few lines of data: 37 861002061 7710040



MORE DEFINITIONS AND NOTATION

There are several equivalent ways to
characterize the probability distribution of a
survival random variable. Some of these are
familiar; others are special to survival analysis.
We will focus on the following terms:

* The density function f(t)

e The survivor function S(t)

 The hazard function A(t)

 The cumulative hazard function A(t)




DENSITY FUNCTION

Density function (or Probability Mass Function)
for discrete r.v.’s Suppose that T takes values In
a2/l an.

f(t) = Pr(T =t)

fi f t=a;.7=12,..., n
0 if t#a;,7=12,..., n

e Density Function for continuous r.v.’s

. 1 |
f(t) = Jim =Pr(t <T < t+Ab)



SURVIVORSHIP FUNCTION: S(T) = P(T 2 1),

In other settings, the cumulative distribution
function, F(t) = P(T <£1t), is of interest. In survival
analysis, our interest tends to focus on the
survival function, S(t)

For a continuous random wvariable:
S(t)= [ f(u)du

For a discrete random variable:



NOTES:

 From the definition of S(t) for a continuous
variable, S(t) = 1-F(t) as long as F(t) is absolutely
continuous w.r.t the Lebesgue measure. [That is,
F(t) has a density function.]

* For a discrete variable, we have to decide what
to do if an event occurs exactly at time t; i.e., does
that become part of F(t) or S(t)?

* To get around this problem, several books define
S(t) = Pr(T > t), or else define F(t) = Pr(T < 1) (eg.
Collett)



Sometimes called an instantaneous failure
rate, the force of mortality, or the age-specific

failure rate. Continuous random variables:

Alt) = lim L Prit<T <t+ At|T > t)

At—0 At '
— lim L Prt<T <t+At] n [T =1
A0 At Pr(T > t)

o L Prt<T<t+AY
T A0 At Pr(T > 1)
f(t)

S(t)



Discrete random wvariables:

Aaj) = A; = Pr(T =a|T = a;)

\ g

"~ PT>a)
_ fla;)
S(a;)

f(t)

E.l!.':-:ql > fl-r.ﬂll-' )




e Cumulative Hazard Function A(t)

Continuous random variables:

Alt) = j:: Alu)du

Discrete random wvariables:

:'i[]‘l;l — Z )llll:l.

kgt



RELATIONSHIP BETWEEN S(T) AND A(T)

We've already shown that, for a continnous r.v.

For a left-continuous survivor function S(%), we can show:

flt) = —8(t) or S't) = — f(t)

We can use this relationship to show that:
d : 1 '

= J(#)
- S(t)

()
S(t)

So another way to write A(#) is as follows:

d
Alt) = —Eilﬂgﬂiﬂ]



RELATIONSHIP BETWEEN S(T) AND A(T)

e Continuous case:

A(t) = [:/\(u)du

)
B -/" S(u)d

u

t d |
/() ~ieleg log S(u)du
= —log S(t) + log S(0)

= S(t) ="
e Discrete case:
Suppose that a; <t < a;;1. Then
S(t) = P(T=2a1,, T Zay,...,T = aj;1)
= P(T > a1)P(T Z a2|T = a1)--- P(T = aj1|T = ay)
= (1= XE) G R =)
= JI (1 —Ax)
krag<t



AL

MEASURING CENTRAL TENDENCY IN SURVI
e Mean survival - call this y
o= _,‘{]x uf(u)du for continnous T

Te
= » a;f; fordiscrete T

1=1

e Median survival - call this v, s delied by
S(t)=0.5

Similarly, any other percentile could be defined.

In practice, we don’t usually hit the median survival
at exactly one of the failure times. In this case. the
estimated median survival is the smallest time 7 such
that

S(t) <05



SOME HAZARD SHAPES SEEN IN APPLICATIONS

. * increasing e.g. aging after 65
e decreasing e.g. survival after surgery
e pathtub e.g. age-specific mortality

e constant e.g. survival of patients with
advanced chronic diseas



ESTIMATING THE SURVIVAL OR HAZARD FUNCTION

We can estimate the survival (or hazard) function in two
ways:

* by specifying a parametric model for A(t) based on a
particular density function f(t)

e by developing an empirical estimate of the survival
function (i.e., non-parametric estimation) If no censoring:
The empirical estimate of the survival function, S (t), is the
proportion of individuals with event times greater than t.
With censoring:

If there are censored observations, then S (t) is nhot a good
estimate of the true S(t), so other non-parametric methods
must be used to account for censoring (life-table methods,
Kaplan-Meier estimator)



SOME PARAMETRIC SURVIVAL DISTRIBUTIONS

flt) = Ae ™M for t >0

S(t) = [T flu)du

— At
= £

: t)
Alt) = %

= A constant hazard!
At) = [ Alu) du

t
= _J,Itrr,ldu
= At

Check: Does S(t) = e 41 72

median: solve (0.5 = S(7) = e 7;

— log(0.5)
= T = - -

mean: 1 A
_,{]x ule Mdu = 5y




THE WEIBULL DISTRIBUTION (2 PARAMETERS)

Generalizes exponential:

S(t) = e
Ft) = —28() = rae=le ™
_ - :

A(t) = mAt"!

A(t) = [ Au)du = At"

A - the scale parameter
t - the shape parameter

The Weilbull distribution is convenient because of its sim-
ple form. It includes several hazard shapes:

) = 1 — constant hazard

0 < k << 1 — decreasing hazard

. > 1 — 1ncreasing hazard



e Rayleigh distribution
Another 2-parameter generalization of exponential:

A(t) = Ao+ A1t

‘,“
\"‘\
A\
\
\

\

e compound exponential
T ~exp(A), A~ g

£6) = [ Ae™g(A)dA

e log-normal. log-logistic:
Possible distributions for T obtained by specifving for
log T' any convenient family of distributions, e.g.

log T ~ normal (non-monotone hazard)
log T' ~ logistic



WHY USE ONE VERSUS ANOTHER?

e technical convenience for estimation and
Inference

e explicit simple forms for f(t), S(t), and A(t).

e qualitative shape of hazard function One can
usually distinguish between a one-parameter
model (like the exponential) and two-parameter
(like Weibull or log-normal) in terms of the
adequacy of fit to a dataset. Without a lot of data,
it may be hard to distinguish between the fits of
various 2-parameter models (i.e., Weibull vs
lognormal)



PREVIEW OF COMING ATTRACTIONS

Next we will discuss the most famous non-parametric approach
for estimating the survival distribution, called the Kaplan-Meier
estimator. To motivate the derivation of this estimator, we will
first consider a set of survival times where there is no
censoring. The following are times to relapse (weeks) for 21
leukemia patients receiving control treatment (Table 1.1 of Cox
& Oakes): 1,1,2,2,3,4,4,5,5,8, 8, 8,8, 11, 11, 12, 12, 15,
17, 22, 23 How would we estimate S(10), the probability that
an individual survives to time 10 or later?

What about A"-?[f-?']'.’ [s |t L2or 27



Values of t S(t)
t<1 21/21=1.000

1<t<2 19/21=0.905

2<t<3 17/21=0.809

3<t<4

1<t<5h

h<t<S8

s<t<11

11 <t <12

12 <t <15

15 <t <17

17T <t <22

22 <t <23

T

Empirical Survival Function:
When there is no censoring, the general formula is:
# individuals with T >t

5(t) = total sample size




In most software packages, the survival function is evaluated just after time
t, i.e., at t +. In this case, we only count the individuals with T > t.

Example for leukemia data (control arm):

Empirical Swurvivor Funciiom — Control SAocom
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Stata Commands for Survival Estimation

usa leukem

.stset remiss status if trt==) (to keep only untreated patients)
(21 observations deleted)

ats li=st
failure _d: status

analysis time _t: remiss

Bag. Nat Survivor Std.

Time Total Fail Lost Function Error [95% Conf. Int.]
1 21 2 ] 0. 9048 0.0841 0.6700 0.9753
2 19 2 ] 0. 8095 0.0857Y 0.65689 i0.9239
3 17 1 ] 0.7T619 0.0929 0.5194 0. 8933
4 16 2 ] 0 .6667 0.1025 0.4254 0. 8250
5 14 2 ] 0.6714 0.1080 0.3380 0. 7492
2] 12 a4 ] 0.38310 0.1060 0.1831 0.5778

11 = 2 ] 0. 2857 0. 0986 0.1166 0.4818
12 & 2 ] i0.1905 O.085Y 0.0k9k 0.3774
15 4 1 ] 0. 1425 0.0764 0.0357 0.3212
17 3 1 ] i0.0952 O.06841 0.0163 0.2612
22 2 i ] 0.0476 O . 0465 0.0033 0.1970
23 1 1 ] O 000D

.8ts graph



V%/// SAS Commands for Survival Estimation
/ 7 7] \\\\\\\\\\\\

:i.np'lltt. \“k‘

E-

00 00 00 00 O N s b (3 b3 R =

proc lifetest data=leuk;
time t;
run;



SAS Output for Survival Estimation

0000 00Nl sl WK R =D

B2 B = = = = =
L k3 =] LN k3 k3 = = O

t

L0000
L0000
L0000
L0000
L0000
L0000
L0000
L0000
L0000
L0000
L0000
L0000
L0000
L0000
L0000
L0000
L0000
L0000
L0000
L0000
L0000
L0000

The LIFETEST Procedure

Product=Limit Survival Estimates

Survival

L R e R - -

L0000
L9048

. 8085
.T619

LBEET

.BT14

.3810
L2857

.1905
L1425
.0962
L0475

0

Failure

= R

>

=D Do

0

09562

.1905
L2381

3333

LAZEG

L6190
L7143

L8095
L8571
L9048
L9524
L0000

Survival

Standard

Error

Lo T e N e

0

L0641

L0BET
L0929

L1029

L1080

. 1060
0986

0857
074
L0641
04EE

0

Numbear
Failed

=t
[T s TR s o JRY O LI e S

I S Y - -
= o D00~ N W R e

Number
Laft

= s e s e s e b e b B kD
DD = B L W DN =] 00D O

[ R S B L O I TS e e



SAS Output for Survival Estimation (cont’d)

Summary Statistics for Time Variable t
Quartile Estimates

Point 95% Confidence Interval
Percent Estimate [Lower Upper)

75 12.0000 8.0000 17.0000

50 8.0000 4.0000 11.0000
25 4.0000 2.0000 8.0000

Mean Standard Error

8.6667 1.4114

Summary of the Number of Censored and Uncensored Values

Percent
Total Failed Censored Censored

21 21 0 0.00




Does anyone have a guess regarding how to calcu-
late the standard error of the estimated survival?

; =
S(8") = P(T =>8) = 5 = 0.381

(at ¢ = 87, we count the 4 events at time=8 as already

L9

having failed)

se[S(87)] = 0.106



ESTIMATING THE SURVIVAL FUNCTION

One-sample nonparametric methods:

We will consider three methods for estimating
a survivorship function

S(t) = Pr(T =2 1)
without resorting to parametric methods:
(1) Kaplan-Meier
(2) Life-table (Actuarial Estimator)
(3) via the Cumulative hazard estimator



(1) THE KAPLAN-MEIER ESTIMATOR

The Kaplan-Meier (or KM) estimator is probably
the most popular approach. It can be justified
from several perspectives:

e product limit estimator
 |ikelihood justification

e redistribute to the right estimator We will
start with an intuitive motivation based on
conditional probabilities, then review some of
the other justifications.



MOTIVATION:

First, consider an example where there is no
censoring. The following are times of remission
(weeks) for 21 leukemia patients receiving
control treatment (Table 1.1 of Cox & Oakes): 1,
1,2,2,3,4,4,5,5,8,8,8,8, 11, 11, 12, 12,
15, 17, 22, 23 How would we estimate S(10),
the probability that an individual survives to

time 10 or later?



What about S(8)? Is it 4 or 7

|-‘\ . A/
.“\
11
1)

\

""""
,,,,,,,,,

\
. “M“
Let’s construct a table of S(t): \\\\\\\\\
Values of t S(t)
t<1 21/21=1.000
1<t<2 19/21=0.905
2<t<3 17/21=0.809
3<i<4
4<t<)H
a<t<8
3<t<11
11 <t <12
12<t<15
15 <t <17
17 <1 <22

2<1<23




When there is no censoring, the general

formula is:

# individuals with T =t

S(t) =

total sample size

Example for leukemia data (control arm):

Estimated Survival Prohability

1.0

Empirical Survivor Function — Conbrol Aro

Time o Remission

Tin
»

bal

Sl o
&.0



WHAT IF THERE IS CENSORING?

Consider the treated group from Table 1.1 of Cox and Oakes:

6+,6,6,6,7,9+,10+, 10,11+, 13,16, 17+ 19+, 20+, 22, 23, 25+,
32+, 32+, 34+, 35+ [Note: times with + are right censored]

We know S(6)=21/21,
because everyone survived at least until time 6 or greater. But, we can’t say
S(7)=17/21,

because we don’t know the status of the person who was censored at time
6. In a 1958 paper in the Journal of the American Statistical Association,
Kaplan and Meier proposed a way to nonparametrically estimate S(t), even
in the presence of censoring. The method is based on the ideas of
conditional probability.



A QUICK REVIEW OF CONDITIONAL
PROBABILITY:

Conditional Probability: Suppose A and B are

two events. Then
~ P(ANB)
P(A|B) P(E)

Multiplication law of probability: 'Can be
obtained from the above relationship, by

multiplying both sides by P(B):

P(ANB) = P(A|B)P(B)



EXTENSION TO MORE THAN 2 EVENTS

: Suppose Al, A2...Ak are k different events.
Then, the probability of all k events happening
together can be written as a product of
conditional probabilities:

P(fll a ..'43... M _r'-L!l;l — P[‘qﬁ'|‘4ﬁ'—l ..M ;41} >
}{P(_r'ill.!l._”_r'il}l._g M...0MN A]:|

x P(A| Ay)
x P(A)



NOW, LET'S APPLY THESE IDEAS TO ESTIMATE S(T):

Suppose aip < t < ag4+1. Then

S(t) = P(T = aj1)

;‘.
= P(T>a))x II P(T=a;n|T=>a;)
1

J=

— [1[1— P(T'=q|T > a))
j=1
-'!l.
= I1[1—A]
S0 ‘;'Iit] o= ﬁ (1 — i)
i=1 T

Y
Juag<t r;

d_:' 15 the number of deaths at a;

r

;18 the number at risk at a;



INTUITION BEHIND THE KAPLAN-MEIER
ESTIMATOR

Think of dividing the observed timespan of the
study into a series of fine intervals so that there
IS a separate interval for each time of death or
censoring:

| o] Je | J¢ |p |[D [D |

Using the law of conditional probability,
Pr(T =t) = ][] FPr(survive j-th interval {; | survived to start of [;)

J

where the product is taken over all the intervals including or
preceding time t.



4 POSSIBILITIES FOR EACH INTERVAL.:

(1) No events (death or censoring) - conditional probability of
surviving the interval is 1

(2) Censoring - assume they survive to the end of the
interval, so that the conditional probability of surviving the
interval is 1

(3) Death, but no censoring - conditional probability of not
surviving the interval is # deaths (d) divided by # ‘at risk’ (r)
at the beginning of the interval. So the conditional probability
of surviving the interval is 1—(d/r).

(4) Tied deaths and censoring - assume censorings last to
the end of the interval, so that conditional probability of
surviving the interval is still 1 — (d/r)



GENERAL FORMULA FOR JTH INTERVAL:

It turns out we can write a general formula for the

conditional probability of surviving th
that holds for all 4 cases:

L
T

We could use the same approach by

e jJ-th interval

grouping the

event times into intervals (say, one interval for

each month), and then counting up t
deaths (events) in each to estimate t

ne number of
ne probability

of surviving the interval (this is callec
estimate).

the lifetable



However, the assumption that those censored
last until the end of the interval wouldn’t be
quite accurate, so we would end up with a
cruder approximation. As the intervals get finer
and finer, the approximations made in
estimating the probabilities of getting through
each interval become smaller and smaller, so
that the estimator converges to the true S(t).
This intuition clarifies why an alternative name
for the KM is the product limit estimator.



The Kaplan-Meier estimator of the survivorship
function (or survival probability) S(t) = Pr(T > t)

1s:

.
S{f) = l_IJii:*r_ff::‘.I'Ir._tlI

J

J

d
= Mjirj<t (]' - :—L)

where

® Ty,...T) 15 the set of K distinct death times observed in
the sample

e d; is the number of deaths at T,

e 7; is the number of individuals “at risk” right before the
j-th death time (everyone dead or censored at or after
that time).

Note: two useful formulas are:
(1) 1y = rj—dje— g
e ¢; is the number of censored observations between the @ 1 = Lla+d)
j-th and (7 + 1)-st death times. Censorings tied at 7, -
are included in ¢,



CALCULATING THE KM - COX AND OAKES EXAMPLE

Make a table with a row for every death or censoring time:

1—(d;/r;) S(r)

»

6 3 1 21 E_(87
1 L

21

10
11
13
16
17
19
20)
22
23



Note that:

e S(t*) only changes at death (failure) times

. J';“[t__"_l is 1 up to the first death time

- J';“[t__"_l only goes to 0 if the last event is a death

Fxlimaled Survival pl‘l_l-]'l:l]:l”il}'

0.8

0.6

0.2

rr.ok

KM plot for treated leukemia patients
Kaplan— Meier Survival Estimate — 6MP Arm
L = L] L] LI L] L] 1
ck H 12 16 Z(F 24 28 32 A6
Time o BEemission
Camsored Failbed 'Jil:ll_l'l Mbediian

L

L

=0



Note: most statistical software packages summa-
rize the KM survival function at 77, i.e., just af-
ter the time of the j-th failure.

In other words, they provide S’(Tjﬂ_

When there is no censoring. the empirical survival estimate

would then be:
':?HJ“}  # individuals with T > 1
. —

total sample size




Output from STATA KM Estimator:

failure time: weaks
failure/censor: remiss

Bag. Net  Survivor Std.
Time Tetal Fail Lost Function Error [85) Conf. Int.]

6 21 3 1 0.8571 0.07V64 0.6197 0.9516
T 17 1 ] 0.8067 0.08659 0.5631 0.9228
9 16 0 1 0.8067 0.08659 0.5631 0.9228
10 15 1 1 0.76289 0.0863 0.5032 0.8854
11 13 0 1 0.7628 0.0863 0.5032 0.8854
13 12 1 ] 0.6902 0.1068 0.4316 0.8491
16 11 1 ] 0.6275 0.1141 0.3675 0.8049
17 10 0 1 0.6275 0.1141 0.3675 0.8043
19 9 0 1 0.6276 0.1141 0.3675 0.8049
20 8 0 1 0.6275 0.1141 0.3675 0.8043
22 T 1 ] 0.5378 0.1282 0.267T8 0.7468
23 6 1 ] 0.4482 0.1346 0.1831 0.6801
25 5 0 1 0.4482 0.1346 0.1831 0.6801
32 4 0 2 0.4482 0.1346 0.1831 0.8801
34 2 0 1 0.4482 0.1346 0.1831 0.6801
35 1 0 1 0.4482 0.1346 0.1831 0.6801



TWO OTHER JUSTIFICATIONS FOR KM ESTIMATOR

|. Likelihood-based derivation (Cox and Oakes) For a
discrete failure time variable, define:

dj number of failures at aj rj number of individuals at
risk at aj (including those censored at aj).

A} Pr(death) in j-th interval (conditional on survival to
start of interval) The likelihood is that of g
Independent binomials:

The likelihood is that of g independent binomials:

4 [F v - .
LA) = IIAY(1—A;)d
j=1 |

I



\\\\\\\\\\\

\ \
Y
%

Therefore, the maximum likelihood estimator of \; - \
IS:

A =d/r,

/ Now we plug in the MLE’s of A to estimate S(t):

St) = T (1-X)

j:aj <t

nE
Jua<t Tj




ll. REDISTRIBUTE TO THE RIGHT JUSTIFICATION

In the absence of censoring, S™(t) is just the proportion of
individuals with T = t. The idea behind Efron’s approach is to
spread the contributions of censored observations out over
all the possible times to their right.

Algorithm:

e Step (1): arrange the n observed times (deaths or
censorings) in increasing order. If there are ties, put
censored after deaths.

o Step (2): Assign weight (1/n) to each time.

e Step (3): Moving from left to right, each time you
encounter a censored observation, distribute its mass to all
times to its right.

Step (4): Calculate S j by subtracting the final weight for
time j from S™ j—-1



PROPERTIES OF THE KM ESTIMATOR

In the case of no censoring:

$(t) = 5(t) = # deaths at t or greater

T

where n 1s the number of individuals in the study.

This is just like an estimated probability from a binomial
distribution, so we have:

S(t) = N (S(t), S(t)[1 — S(t)]/n)

How does censoring affect this?
e S(t) is still approximately normal
e The mean of S(t) converges to the true S(t)

e The variance is a bit more complicated (since the de-
nominator n includes some censored observations).



GREENWOOD’S FORMULA (COLLETT 2.1.3)

We can think of the KM estimator as

- "

Sit)y= TII (1 — A;)

JTi=t

-,

where A; = d;/r;.

Since the A’

J

standard likelihood theory to show that each A;

= are just binomial proportions, we can apply

Y

1S ApProxl-

matelv normal, with mean the true A;, and

1'..'-:1?"{,3;_,] =

Also, the A;'s are independent in large enough samples.

=

Since S(t) is a function of the A;’s, we can estimate its vari-
ance nsing the delta method:

Delta method: If ¥V is normal with mean p and
. B . .
variance o, then g(Y ) is approximately normally
. . . " - > D
distributed with mean g(p) and variance [g'(p)]"o~.



Two specific examples of the delta method: Y

A
1), \\
W) Z=logy) \\\\\‘
117//7/

2
" then 2~ N |log(u). 1) o

W g
/ (B) Z = exp(Y)

then Z ~ N [e",[e"]*0”]

The examples above use the following results from calculus:

d 1 (d.'u)
— logu =

dx u \dz

4 ()
dx N dx




GREENWOOD’S FORMULA (CONTINUED)

Instead of dealing with *S'I[i'”.l directly, we will look at its log:

]{}g[fi'lft}] = 2 log(l— :’H}

Jorj<t
Thus, by approximate independence of the A;'s,

-:-'.'H‘[]{}g[f;'[t}]jl = ¥ wvarflog(l — ifjl]

_,i:r‘I <t

(1 ﬁ
by (A - — | wvar(A;
¥ { :I j:gff |.‘1 _— }LJ) L' l: J:I
(1 ). _
jrj<t \1 — }L.J_) il ..l,;"[ b
A
-t (1 —;’a_-]
d;

jrt (15 — dj)r;

'

'l_

Now, S(t) = l_-:.;]:.[lun-[.é (t)]]. Thus by (B),
var(S(t)) = [S(t) var l]ng[? ]



Greenwood’s Formula:

T = ; o
var(S(t)) = [S(#)]? i<t W

e Ais 1.96se(L(t))
e To calculate this. we need to caleulate

't.‘f};rlff,[f]] = var [lu_ef_l,[— I{}g{.‘?(t]]]}

e From our previous calculations, we know

d;

't.‘fn‘{luf.‘,[ér{t:'” = _Z |:——J;;E}1r

Je e
o Applying the delta method as m example (A), we get:

var(L(t)) = var(log(— log[S(1)]))
1 d;

J

log S(t)]2 _,i:%c:: (rj — dj)r;

e We take the square root of the above to get se(L(t)),
and then form the confidence intervals as:

+1.96 se( L{t))

S(t)

e This is the approach that Stata uses. Splus gives an op-
tion to calculate these bounds (use conf . type=’’log-log’’
in surv.fit).



THE (2) LIFETABLE ESTIMATOR OF SURVIVAL:

We said that we would consider the following
three methods for estimating a survivorship
function

S(t) = Pr(T >1)

without resorting to parametric methods:
(1) \ Kaplan-Meier

(2) == Life-table (Actuarial Estimator)
(3) == Cumulative hazard estimator



(2) THE LIFETABLE OR ACTUARIAL ESTIMATOR

* one of the oldest techniques around
e used by actuaries, demographers, etc.

e applies when the data are grouped Our goal
IS still to estimate the survival function, hazard,
and density function, but this is complicated by
the fact that we don’t know exactly when during

each time interval an event occurs




Clinical Life tables - applies to grouped survival
data from studies in patients with specific
diseases. Because patients can enter the study
at different times, or be lost to follow-up,
censoring must be allowed

Notation

o the j-th time interval is [t;_,,1;)
e ¢; - the munber of censorings in the j-th interval
e d; - the number of failures in the j-th interval

e 7; is the number entering the interval




Example: 2418 Males with Angina Pectoris (Lee, p.91)

Year after

. v T a . . . ! — e . ah . J
Diagnosis  §j d; ¢ 1 r; =1vj — cj/2

0, 1) 1 456 0 2418 2418.0
1,2) 2 226 39 1962 19425 (1962 - ¥
2.3) 3 152 22 1697 1686.0
3.4) 4 171 23 1523 1511.5
4, 5) 5 135 24 1329 1317.0
5, 6) 6 125 107 1170 1116.5
6, 7) 7 83 133 938 8TL5

ete..



We could apply the K-M formula directly to the numbers
in the table on the previous page, estimating S(t) as

S(t) = ,H, {1 —f—:
However, this approach is unsatisfactory for grouped
data.... it treats the problem as though it were in
discrete time, with events happening only at 1 yr, 2 yr,
etc. In fact, what we are trying to calculate here is the
conditional probability of dying within the interval, given
survival to the beginning of it.



What should we do with the censored people?

We can assume that censorings occur:

e at the beginning of each mnterval: *.r’; =T;—C;

e af the end of each interval: r:- =T

¢ on average halfway through the interval:

.i"ji = 'J'"J' = E_.I.H}i]

The last assumption vields the Actuarial Estimator. It is
appropriate if censorings occur uniformly throughout the in-
terval,



CONSTRUCTING THE LIFETABLE

First, some additional notation for the j-th
interval, [tj—1,t)):

 Midpoint (tmj) - useful for plotting the density
and the hazard function

e Width (bj = tj—tj—1) needed for calculating
the hazard in the j-th interval




QUANTITIES ESTIMATED:

Quantities estimated:

e Conditional probability of dyving
4 =d;/r]

e Conditional probability of surviving
p =14

o Cumulative probability of surviving at t;:

S(t;) = T pu

£<j

(e

£<j



SOME IMPORTANT POINTS TO NOTE:

e Because the intervals are defined as [t;_;,t;), the first
interval typically starts with 5 = ().

e Stata estimates the survival function at the right-hand
endpoint of each interval. Le., 5(t;)

e However, SAS estimates the survival function at the left-
hand endpoint, S5(f;-1).

e The implication in SAS 1= that .f'?{tﬂ]l = 1 and f?-‘litljl =M



CONSTRUCTING THE LIFETABLE USING STATA

Uses the Itable command. If the raw data are already grouped, then the freq
statement must be used when reading the data.

- infile years status count using angina.dat
(32 obpervetions read)

. ltable years status [fregq=count]

EBag. Srd.

Interval Total Deaths Lost Survival Error [95% Conf. Imt.]
G i 2418 456 o 0.8114 O 000 0.7a52 0. 8264
1 2 1962 226 35 O.7170 IR T e 0. 6236 0.7346
2 3 1687 152 22 0.6524 O Q0aT 0.B329 0.6711
3 2 1523 171 23 0.5786 0. 0101 0. 5584 0.5881
. 5 1329 135 24 0.5193 o010 0. 4939 0.53a9%
5 G 1170 125 107 0.4611 Oo010d 02407 0.4813
& T 538 23 133 0.4172 0. 0105 0. 3987 0.43T7T6
T B T2z T4 102 0.3712 001G 0. 3505 0.391%
B g 546 51 & 0.3342 00107 0.3133 0. 3553
a 10 427 a3 Gd 0. ZS98T 0. 01048 0.2T75 0, 3201

10 11 a2 43 45 0. 2557 o.0111 02341 0. 2777

11 12 233 i 53 0.2136 00114 0. 1817 0. 2383

12 13 146 18 33 0.1839 0.0118 0.1614 0. 2075

13 14 a5 g 27 0.1836 O.01z3 O 140 0.1884

14 15 54 =1 23 0.1429 00133 0.1180 0.1701

15 16 30 0 30 0.1429 0. 0133 0.1180 0.1701



. ltable years status [fregq=count], hazard

Eeg. Cum . Std. Std.

Interval Total Failure Error Hazard Error [85% Conf Int]
Lok i 2418 0. 1836 O Q0E0 o, 2082 O 0057 o.18382 O 2272
1 2 1562 0. 2830 [ b Lo e 0.1235 O O0E2 O.107F5  0.1398
2 3 18497 0. 34786 O O0ST O 0844 O 007TE o.0Faed4 O 1054
3 = 15323 . 2214 (I O.1199 OO0 S O, 1020 O.137T5
b 5 13325 O . 2807 O_O103 0. 1080 O D053 O 0398 O, 1262
5 =1 1170 o . 5339 O o010 O.1188 O 0106 O.05%78 O.1393
=1 T 538 0. 5828 O _0105 O L1000 O.0110 O.0F85s 0.1215
T 8 Tz 0. 5288 (o I O.11&87T O 0135 O 0502 O.1433
3 o 546 0. 6558 O O107 O, 104 a.0147 O.0761 O.1335
9 10 227 O.7F013 00108 0.1123 O 0173 o.0784 O.1452

10 11 221 0. 7T443 o I I 0.1552 002385 o 1080 O.2015

11 12 233 0. TEE4 o s I - 0.1794 O 03085 o.1184 02395

12 13 148 d.81&61 o_O118 0. 1454 O . 0351 O O306 o.2182

13 14 a5 0. 8364 Oo0123 0.11&69 O 0389 o.080T  0.1831

14 15 549 0.8571 Oo0133 0.1348 o . 0549 O.027F2  O.2425

15 16 30 0. 8571 o_0133 O 30 -

There is also a “fajilure” option which gives the number of
failures (like the default), and also provides a 95% confidence
interval on the cumulative failure probability.



