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Survival Analysis:   

typically focuses on time to event data. In the 

most general sense, it consists of techniques 

for positive valued random variables 



 time to death  

 • time to onset (or relapse) of a disease  

 • length of stay in a hospital  

 • duration of a strike 

  • money paid by health insurance  

 • viral load measurements  

 • time to finishing a doctoral dissertation 



SOME DEFINITIONS AND NOTATION 

 Failure time random variables are always non-

negative. That is, if we denote the failure time 

by T, then T ≥ 0. T can either be discrete (taking 

a finite set of values, e.g. a1, a2, . . . , an) or 

continuous (defined on (0, ∞)). A random 

variable X is called a censored failure time 

random variable if X = min(T, U), where U is a 

nonnegative censoring variable. 



 In order to define a failure time random 

variable, we need: (1) an unambiguous time 

origin (e.g. randomization to clinical trial, 

purchase of car) (2) a time scale (e.g. real time 

(days, years), mileage of a car) (3) definition of 

the event (e.g. death, need a new car 

transmission) 

SOME DEFINITIONS AND NOTATION 



ILLUSTRATION OF SURVIVAL DATA 



THE ILLUSTRATION OF SURVIVAL DATA ON THE 

PREVIOUS PAGE SHOWS SEVERAL FEATURES 

WHICH ARE TYPICALLY 

 The illustration of survival data on the previous 
page shows several features which are typically 
encountered in analysis of survival data: • 
individuals do not all enter the study at the same 
time • when the study ends, some individuals still 
haven’t had the event yet • other individuals drop 
out or get lost in the middle of the study, and all 
we know about them is the last time they were still 
“free” of the event The first feature is referred to 
as “staggered entry” The last two features relate to 
“censoring” of the failure time events. 



TYPES OF CENSORING: 

 • Right-censoring : only the r.v. Xi = min(Ti , Ui) is observed due 

to – loss to follow-up – drop-out – study termination We call 

this right-censoring because the true unobserved event is to 

the right of our censoring time; i.e., all we know is that the 

event has not happened at the end of follow-up. In addition to 

observing Xi , we also get to see the failure indicator: 

Some software packages instead assume we have a censoring 

indicator: 

Right-censoring is the most common type of censoring assumption we will deal with in 

survival analysis 



 • Left-censoring Can only observe Yi = max(Ti , 

Ui) and the failure indicators: 

e.g. (Miller) study of age at which African children learn a task. 

Some already knew (left-censored), some learned during study 

(exact), some had not yet learned by end of study (right-censored).  

Interval-censoring  
Observe (Li , Ri) where Ti ∈ (Li , Ri) Ex. 1: Time to prostate cancer, observe l 



 Ex. 1: Time to prostate cancer, observe 

longitudinal PSA measurements 

  Ex. 2: Time to undetectable viral load in AIDS 

studies, based on measurements of viral load 

taken at each clinic visit 

  Ex. 3: Detect recurrence of colon cancer after 

surgery. Follow patients every 3 months after 

resection of primary tumor. 



INDEPENDENT VS INFORMATIVE CENSORING 

 We say censoring is independent (non-informative) 

if Ui is independent of Ti . 

  – Ex. 1 If Ui is the planned end of the study (say, 2 

years after the study opens), then it is usually 

independent of the event times. 

  – Ex. 2 If Ui is the time that a patient drops out of 

the study because he/she got much sicker and/or 

had to discontinue taking the study treatment, 

then Ui and Ti are probably not independent. 



AN INDIVIDUAL CENSORED 

 An individual censored at U should be 
representative of all subjects who survive to U. 
This means that censoring at U could depend on 
prognostic characteristics measured at baseline, 
but that among all those with the same baseline 
characteristics, the probability of censoring prior to 
or at time U should be the same.  

 • Censoring is considered informative if the 
distribution of Ui contains any information about 
the parameters characterizing the distribution of Ti 
. 



 Suppose we have a sample of observations on 

n people: (T1, U1),(T2, U2), ...,(Tn, Un) There 

are three main types of (right) censoring times:  

Type I: All the Ui ’s are the same e.g. animal 

studies, all animals sacrificed after 2 years • 

Type II: Ui = T(r) , the time of the rth failure. e.g. 

animal studies, stop when 4/6 have tumors • 

Type III: the Ui ’s are random variables, δi ’s are 

failure indicators:  



SOME EXAMPLE DATASETS 

 Example A. Duration of nursing home stay (Morris 
et al., Case Studies in Biometry, Ch 12) The 
National Center for Health Services Research 
studied 36 for-profit nursing homes to assess the 
effects of different financial incentives on length of 
stay. “Treated” nursing homes received higher per 
diems for Medicaid patients, and bonuses for 
improving a patient’s health and sending them 
home. Study included 1601 patients admitted 
between May 1, 1981 and April 30, 1982. 



VARIABLES INCLUDE 

 

 LOS - Length of stay of a resident (in days) 

  AGE - Age of a resident  

 RX - Nursing home assignment (1:bonuses, 0:no 
bonuses)  

 GENDER - Gender (1:male, 0:female)  

 MARRIED - (1: married, 0:not married)  

 HEALTH - health status (2:second best, 5:worst)  

 CENSOR - Censoring indicator (1:censored, 
0:discharged)  

 First few lines of data: 37 86 1 0 0 2 0 61 77 1 0 0 4 0 



MORE DEFINITIONS AND NOTATION 

 There are several equivalent ways to 
characterize the probability distribution of a 
survival random variable. Some of these are 
familiar; others are special to survival analysis. 
We will focus on the following terms:  

 • The density function f(t)  

 • The survivor function S(t)  

 • The hazard function λ(t)  

 • The cumulative hazard function Λ(t) 



DENSITY FUNCTION 

 Density function (or Probability Mass Function) 

for discrete r.v.’s Suppose that T takes values in 

a1, a2, . . . , an. 

• Density Function for continuous r.v.’s  



SURVIVORSHIP FUNCTION: S(T) = P(T ≥ T). 

 In other settings, the cumulative distribution 

function, F(t) = P(T ≤ t), is of interest. In survival 

analysis, our interest tends to focus on the 

survival function, S(t). 

 



NOTES: 

 • From the definition of S(t) for a continuous 
variable, S(t) = 1−F(t) as long as F(t) is absolutely 
continuous w.r.t the Lebesgue measure. [That is, 
F(t) has a density function.]  

 • For a discrete variable, we have to decide what 
to do if an event occurs exactly at time t; i.e., does 
that become part of F(t) or S(t)?  

 • To get around this problem, several books define 
S(t) = Pr(T > t), or else define F(t) = Pr(T < t) (eg. 
Collett) 



HAZARD FUNCTION Λ(T) 

 Sometimes called an instantaneous failure 

rate, the force of mortality, or the age-specific 

failure rate. 



HAZARD FUNCTION Λ(T) 

 



HAZARD FUNCTION Λ(T) 



RELATIONSHIP BETWEEN S(T) AND Λ(T) 



RELATIONSHIP BETWEEN S(T) AND Λ(T) 

 



MEASURING CENTRAL TENDENCY IN SURVIVAL  



SOME HAZARD SHAPES SEEN IN APPLICATIONS 

 : • increasing e.g. aging after 65  

 • decreasing e.g. survival after surgery  

 • bathtub e.g. age-specific mortality 

  • constant e.g. survival of patients with 

advanced chronic diseas 



ESTIMATING THE SURVIVAL OR HAZARD FUNCTION 

 We can estimate the survival (or hazard) function in two 
ways:  

 • by specifying a parametric model for λ(t) based on a 
particular density function f(t)  

 • by developing an empirical estimate of the survival 
function (i.e., non-parametric estimation) If no censoring: 
The empirical estimate of the survival function, S˜(t), is the 
proportion of individuals with event times greater than t. 
With censoring:  

 If there are censored observations, then S˜(t) is not a good 
estimate of the true S(t), so other non-parametric methods 
must be used to account for censoring (life-table methods, 
Kaplan-Meier estimator) 



SOME PARAMETRIC SURVIVAL DISTRIBUTIONS 



THE WEIBULL DISTRIBUTION (2 PARAMETERS) 

 



 



WHY USE ONE VERSUS ANOTHER? 

 • technical convenience for estimation and 
inference  

 • explicit simple forms for f(t), S(t), and λ(t). 

  • qualitative shape of hazard function One can 
usually distinguish between a one-parameter 
model (like the exponential) and two-parameter 
(like Weibull or log-normal) in terms of the 
adequacy of fit to a dataset. Without a lot of data, 
it may be hard to distinguish between the fits of 
various 2-parameter models (i.e., Weibull vs 
lognormal) 



PREVIEW OF COMING ATTRACTIONS 

 Next we will discuss the most famous non-parametric approach 

for estimating the survival distribution, called the Kaplan-Meier 

estimator. To motivate the derivation of this estimator, we will 

first consider a set of survival times where there is no 

censoring. The following are times to relapse (weeks) for 21 

leukemia patients receiving control treatment (Table 1.1 of Cox 

& Oakes): 1, 1, 2, 2, 3, 4, 4, 5, 5, 8, 8, 8, 8, 11, 11, 12, 12, 15, 

17, 22, 23 How would we estimate S(10), the probability that 

an individual survives to time 10 or later? 





 In most software packages, the survival function is evaluated just after time 

t, i.e., at t +. In this case, we only count the individuals with T > t. 







 



 



 



ESTIMATING THE SURVIVAL FUNCTION 

 One-sample nonparametric methods: 

  We will consider three methods for estimating 
a survivorship function  

 S(t) = Pr(T ≥ t) 

  without resorting to parametric methods: 

  (1) Kaplan-Meier  

 (2) Life-table (Actuarial Estimator) 

 (3) via the Cumulative hazard estimator 



(1) THE KAPLAN-MEIER ESTIMATOR 

 The Kaplan-Meier (or KM) estimator is probably 
the most popular approach. It can be justified 
from several perspectives:  

 • product limit estimator  

 • likelihood justification  

 • redistribute to the right estimator We will 
start with an intuitive motivation based on 
conditional probabilities, then review some of 
the other justifications.  



MOTIVATION: 

 First, consider an example where there is no 

censoring. The following are times of remission 

(weeks) for 21 leukemia patients receiving 

control treatment (Table 1.1 of Cox & Oakes): 1, 

1, 2, 2, 3, 4, 4, 5, 5, 8, 8, 8, 8, 11, 11, 12, 12, 

15, 17, 22, 23 How would we estimate S(10), 

the probability that an individual survives to 

time 10 or later? 





EMPIRICAL SURVIVAL FUNCTION: 

 When there is no censoring, the general 

formula is: 



WHAT IF THERE IS CENSORING? 

 Consider the treated group from Table 1.1 of Cox and Oakes: 

  6 + , 6, 6, 6, 7, 9 + , 10+ , 10, 11+ , 13, 16, 17+ 19+ , 20+ , 22, 23, 25+ , 

32+ , 32+ , 34+ , 35+ [Note: times with + are right censored]  

 We know S(6)= 21/21,  

 because everyone survived at least until time 6 or greater. But, we can’t say  

 S(7) = 17/21,  

 because we don’t know the status of the person who was censored at time 

6. In a 1958 paper in the Journal of the American Statistical Association, 

Kaplan and Meier proposed a way to nonparametrically estimate S(t), even 

in the presence of censoring. The method is based on the ideas of 

conditional probability. 



A QUICK REVIEW OF CONDITIONAL 

PROBABILITY: 

 Conditional Probability: Suppose A and B are 

two events. Then 

 

 Multiplication law of probability: can be 

obtained from the above relationship, by 

multiplying both sides by P(B): 

 

 

 



EXTENSION TO MORE THAN 2 EVENTS 

 : Suppose A1, A2...Ak are k different events. 

Then, the probability of all k events happening 

together can be written as a product of 

conditional probabilities: 



NOW, LET’S APPLY THESE IDEAS TO ESTIMATE S(T): 



INTUITION BEHIND THE KAPLAN-MEIER 

ESTIMATOR 

 Think of dividing the observed timespan of the 

study into a series of fine intervals so that there 

is a separate interval for each time of death or 

censoring: 



4 POSSIBILITIES FOR EACH INTERVAL: 

 (1) No events (death or censoring) - conditional probability of 
surviving the interval is 1  

 (2) Censoring - assume they survive to the end of the 
interval, so that the conditional probability of surviving the 
interval is 1  

 (3) Death, but no censoring - conditional probability of not 
surviving the interval is # deaths (d) divided by # ‘at risk’ (r) 
at the beginning of the interval. So the conditional probability 
of surviving the interval is 1−(d/r). 

  (4) Tied deaths and censoring - assume censorings last to 
the end of the interval, so that conditional probability of 
surviving the interval is still 1 − (d/r) 



GENERAL FORMULA FOR JTH INTERVAL: 

 It turns out we can write a general formula for the 
conditional probability of surviving the j-th interval 
that holds for all 4 cases: 

 

 

 We could use the same approach by grouping the 
event times into intervals (say, one interval for 
each month), and then counting up the number of 
deaths (events) in each to estimate the probability 
of surviving the interval (this is called the lifetable 
estimate). 



 However, the assumption that those censored 
last until the end of the interval wouldn’t be 
quite accurate, so we would end up with a 
cruder approximation. As the intervals get finer 
and finer, the approximations made in 
estimating the probabilities of getting through 
each interval become smaller and smaller, so 
that the estimator converges to the true S(t). 
This intuition clarifies why an alternative name 
for the KM is the product limit estimator. 





CALCULATING THE KM - COX AND OAKES EXAMPLE 









TWO OTHER JUSTIFICATIONS FOR KM ESTIMATOR 

 I. Likelihood-based derivation (Cox and Oakes) For a 

discrete failure time variable, define: 

  dj number of failures at aj rj number of individuals at 

risk at aj (including those censored at aj).  

 λj Pr(death) in j-th interval (conditional on survival to 

start of interval) The likelihood is that of g 

independent binomials: 





II. REDISTRIBUTE TO THE RIGHT JUSTIFICATION 

 In the absence of censoring, Sˆ(t) is just the proportion of 
individuals with T ≥ t. The idea behind Efron’s approach is to 
spread the contributions of censored observations out over 
all the possible times to their right. 

 Algorithm:  

 • Step (1): arrange the n observed times (deaths or 
censorings) in increasing order. If there are ties, put 
censored after deaths.  

 • Step (2): Assign weight (1/n) to each time.  

 • Step (3): Moving from left to right, each time you 
encounter a censored observation, distribute its mass to all 
times to its right. • 

  Step (4): Calculate Sˆ j by subtracting the final weight for 
time j from Sˆ j−1 



PROPERTIES OF THE KM ESTIMATOR 



GREENWOOD’S FORMULA (COLLETT 2.1.3) 





GREENWOOD’S FORMULA (CONTINUED) 





THE (2) LIFETABLE ESTIMATOR OF SURVIVAL: 

 We said that we would consider the following 

three methods for estimating a survivorship 

function 

  S(t) = Pr(T ≥ t) 

  without resorting to parametric methods: 

  (1) √ Kaplan-Meier 

  (2) =⇒ Life-table (Actuarial Estimator) 

  (3) =⇒ Cumulative hazard estimator 



(2) THE LIFETABLE OR ACTUARIAL ESTIMATOR 

 • one of the oldest techniques around  

 • used by actuaries, demographers, etc. 

  • applies when the data are grouped Our goal 

is still to estimate the survival function, hazard, 

and density function, but this is complicated by 

the fact that we don’t know exactly when during 

each time interval an event occurs 



 Clinical Life tables - applies to grouped survival 

data from studies in patients with specific 

diseases. Because patients can enter the study 

at different times, or be lost to follow-up, 

censoring must be allowed 





ESTIMATING THE SURVIVORSHIP FUNCTION 

 We could apply the K-M formula directly to the numbers 
in the table on the previous page, estimating S(t) as 

 

 

 However, this approach is unsatisfactory for grouped 
data.... it treats the problem as though it were in 
discrete time, with events happening only at 1 yr, 2 yr, 
etc. In fact, what we are trying to calculate here is the 
conditional probability of dying within the interval, given 
survival to the beginning of it. 





CONSTRUCTING THE LIFETABLE 

 First, some additional notation for the j-th 

interval, [tj−1,tj):  

 • Midpoint (tmj) - useful for plotting the density 

and the hazard function  

 • Width (bj = tj−tj−1) needed for calculating 

the hazard in the j-th interval 



QUANTITIES ESTIMATED: 



SOME IMPORTANT POINTS TO NOTE: 



CONSTRUCTING THE LIFETABLE USING STATA 

 Uses the ltable command. If the raw data are already grouped, then the freq 

statement must be used when reading the data. 

 




