ANALYSIS OF MIXED COSTS HIGH-LOW METHOD

EXAMPLE: Kohlson Company has incurred the following shipping costs over the past eight months:

UnitsSold	Shipping Cost
January	6,000 \$66,000
February	5,000 \$65,000
March	7,000 \$70,000
April	9,000 \$80,000
Мау	8,000 \$76,000
June	10,000 \$85,000
July	12,000 \$100,000
August	11,000 \$87,000

With the high-low method, only the periods in which the lowest activity and the highest activity occurred are used to estimate the variable and fixed components of the mixed cost.

Y = \$40,000 + \$5X

LEAST-SQUARES REGRESSION (cont'd)

Example: Montrose Hospital operates a cafeteria for employees.Management would like to know how cafeteria costs are affected by the number of meals served.

Meals	Total
Served	Cost
Х	Y
April 4,000	\$9,500
Мау 1,000	\$4,000
June 3,000	\$8,000
July 5,000	\$10,000
August 10,000	\$19,500
September 7,000	\$14,000

Statistical software or a spreadsheet program can do the computations required by the least-squares method.

The results in this case are:

Intercept (fixed cost) \$2,433

Slope (variable cost)..... \$1.68

R2......0.99

The fixed cost is therefore \$2,433 per month and the variable cost is \$1.68 per meal served, or:

Y = \$2,433 + \$1.68X,

where X is meals served.

R2 is a measure of the goodness of fit of the regression line. In this case, it indicates that 99% of the variation in cafeteria costs is due to the number of meals served. This suggests a very good fit.