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Estimating Parameters from  
Simple, Stratified and Cluster  

Sampling Procedures 
 

Simple Random Sampling 
 
 Suppose the observations 1 2, , ny y yK  are to be sampled from a population with mean µ , 
standard deviation σ , and size N in such a way that every possible sample of size n has an equal 
chance of being selected.  Then the sample 1 2, , ny y yK  was selected in a simple random sample.  
If the sample mean is denoted by y , then we have 
 

( )E y µ=   
and  

( )
2

1
N nV y

n N
σ −⎛ ⎞= ⎜ ⎟−⎝ ⎠

. 

 

The term 
1

N n
N
−⎛ ⎞

⎜ ⎟−⎝ ⎠
 in the above expression is known as the finite population correction factor.   

For the sample variance 2s , it can be shown that  
 

( )2 2

1
NE s

N
σ⎛ ⎞= ⎜ ⎟−⎝ ⎠

. 

 

When using 2s  as an estimate of 2σ , we must adjust with 2 21N s
N

σ −⎛ ⎞≈ ⎜ ⎟
⎝ ⎠

.   Consequently, an 

unbiased estimator of the variance of the sample mean is given by  
 

( )
2

2
1

ˆ
1

N s
N n s N nNV y

n N n N

−⎛ ⎞
⎜ ⎟ − −⎛ ⎞ ⎛ ⎞⎝ ⎠= =⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

. 

As a rule of thumb, the correction factor N n
N
−⎛ ⎞

⎜ ⎟
⎝ ⎠

 can be ignored if it is greater than 0.9, or if the 

sample is less than 10% of the population. 
 As an example, consider the finite population composed of the 4N =  elements 
{ }0, 2, 4, 6 .  For this population 3µ =  and 2 5σ = .   Simple random samples, without 
replacement, of size 2n =  are selected from this population.  All possible samples along with 
their summary statistics are listed below. 
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Sample Probability Mean Variance 
{ }0, 2  1/6 1 2 

{ }0, 4  1/6 2 8 

{ }0, 6  1/6 3 18 

{ }2, 4  1/6 3 2 

{ }2, 6  1/6 4 8 

{ }4, 6  1/6 5 2 

 
(1) The expected value of the sample means is  

( ) ( ) ( )
6

1

1 1 2 3 3 4 5 3
6i i

i
E y y p y

=

⎛ ⎞= ⋅ = + + + + + =⎜ ⎟
⎝ ⎠

∑ .   

Notice that ( )E y µ= . 
 

(2) The variance of the sample means is  
( ) ( ) ( )( ) ( ) ( )2 22 2 3V y E y E y E y= − = − .   So 

( ) ( ) ( )
6

2 2 2 2 2 2 2 2 2

1

1 641 2 3 3 4 5
6 6i i

i
E y y p y

=

⎛ ⎞= ⋅ = + + + + + =⎜ ⎟
⎝ ⎠

∑   

and 

( ) 64 59
6 3

V y = − =  

 

 We see in this example that ( )
2 5 4 2 5 2 5

1 2 4 1 2 3 3
N nV y

n N
σ − −⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞= = = =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟− −⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

. 

 
(3) The expected value of the sample variances is 
 

( ) ( ) ( )
6

2 2 2

1

1 202 8 18 2 8 2
6 3i i

i
E s s p s

=

⎛ ⎞= ⋅ = + + + + + =⎜ ⎟
⎝ ⎠

∑ . 

 

Again, we see that ( ) ( )2 2 4 205
1 3 3

NE s
N

σ⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠
, as the theory states must be true. 

 
Estimation of a Population Mean 
 

If we are interested in estimating a population mean from a simple random sample, we 
have  

1ˆ

n

i
i

y
y

n
µ == =

∑
. 
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If we are interested in estimating a population variance from a simple random sample, we have 

( )
2

ˆ s N nV y
n N

−⎛ ⎞= ⎜ ⎟
⎝ ⎠

  

where 

( )2

2 1

1

n

i
i

y y
s

n
=

−
=

−

∑
. 

 
The margin of error is 2 standard errors, so  

( )
2

ˆ2 2 s N nV y
n N

−⎛ ⎞= ⎜ ⎟
⎝ ⎠

. 

 
Estimation of a Population Proportion 
 

If each observation in the sample is coded 1 for “success” and 0 for “failure”, the sample 
mean becomes the sample proportion.   In addition, we have  
 

( )2 ˆ ˆ1
1

p ps
n n

−
=

−
, 

where p̂  denotes the sample proportion.  To see this, recall that 
( )2

2 1

1

n

i
i

y y
s

n
=

−
=

−

∑
, so 

( ) ( ) ( ) ( )22 2 2 2 2

1 1 1 1 1
1 2 2

n n n n n

i i i i i
i i i i i

n s y y y y y y y y y y
= = = = =

− = − = − + = − +∑ ∑ ∑ ∑ ∑ . 

Since 1

n

i
i

y
y

n
==
∑

, we have 
1

n

i
i

n y y
=

=∑ .  Also, since each iy  is either 0 or 1, we have 

2
i iy y=∑ ∑  and ˆy p= .   

 
Then  

( ) ( )2 2 2 2 2 2

1 1 1 1

ˆ ˆ ˆ ˆ2 2 1
n n n n

i i i
i i i i

y y y y y ny ny ny ny np np np p
= = = =

− + = − + = − = − = −∑ ∑ ∑ ∑ . 

So, we have ( ) ( )2 ˆ ˆ1 1n s np p− = −  or equivalently, ( )2 ˆ ˆ1
1

p ps
n n

−
=

−
. 

 
Using the formulas for the mean and the equality above, we can determine the estimator 

of the population proportion, of the variance of p̂ , and the margin of error for the proportion. 

The estimator of the population proportion is 1ˆ

n

i
i

y
p y

n
== =
∑

. 
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The estimated variance of p̂  is ( ) ( )ˆ ˆ1ˆ ˆ
1

p p N nV p
n N
− −⎛ ⎞= ⎜ ⎟− ⎝ ⎠

.   The margin of error of estimation is 

( ) ( )ˆ ˆ1ˆ ˆ2 2
1

p p N nV p
n N
− −⎛ ⎞= ⎜ ⎟− ⎝ ⎠

. 

 
 
Estimating the Population Total 
 
 Finding an estimate of the population total is meaningless for an infinite population.  
However, for a finite population, the population total is a very important population parameter.  
For example, we may want to estimate the total yield of corn in Iowa, or the total number of 
apples in an orchard.  If we know the population size N and the population mean µ , then the 
total τ  is just Nτ µ= .   

So, the estimator of the population total τ  is  1ˆ

n

i
i

N y
N y

n
τ == =

∑
.    The estimated variance of τ  

is  ( ) ( ) ( )
2

2 2ˆ ˆ ˆˆ s N nV V N y N V y N
n N

τ
⎛ ⎞ −⎛ ⎞= = ⋅ = ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
.   

 
Finally, the margin of error of estimation for τ  is   

( )
2

2 1 1ˆ2 2 2s N nV N y N Ns
n N n N

⎛ ⎞ −⎛ ⎞= = −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

. 

 
Sampling with Subsamples 
 
 Suppose you require several field workers to perform the sampling or the sampling takes 
place over several days.  There will be variation in the measurements among the field workers or 
among the days of sampling.  The population mean can be estimated using the subsample means 
of each of the field workers or for each of the days.  This is not a stratified sample, but simply 
breaking up the sample into subsamples.  This method of sampling was developed by Edward 
Deming. 
 
 The sample of size n is to be divided into k subsamples, with each subsample of size m.  
Let iy  denote the mean of the ith  subsample.   

• The estimator of the population mean µ  is 
1

1 k

i
i

y y
k =

= ∑ , the average of the subsample 

means.   

• The estimated variance of y  is ( )
2

ˆ ksN nV y
N k
−⎛ ⎞= ⎜ ⎟

⎝ ⎠
 where 

( )2

2 1

1

k

i
i

k

y y
s

k
=

−
=

−

∑
 and 

measures the variation among the subsample means.   
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Stratified Random Sampling 
 

As described earlier, stratified random sampling produces estimators with smaller 
variance than those from simple random sampling, for the same sample size, when the 
measurements under study are homogeneous within strata but the stratum means vary among 
themselves. The ideal situation for stratified random sampling is to have all measurements within 
any one stratum equal but have differences occurring as we move from stratum to stratum.  To 
create a stratified random sample, divide the population into subgroups so that every element of 
the population is in one and only one subgroup (non-overlapping, exhaustive subgroups). Then 
take a simple random sample within each subgroup.   

The reasons one may choose to perform a stratified random sample are 

(1) Possible reduction in the variation of the estimators (statistical reason) 

(2) Administrative convenience and reduced cost of survey (practical reason) 

(3) Estimates are often needed for the subgroups of the population 

Stratification is a widely used technique as most large surveys have stratification 
incorporated into the design.  Additionally, stratification is one of the basic principles of 
measuring quality and of quality control.  (The noted statistician Edward Deming spent half of 
his life working in survey sampling and the other half in quality control.)  Finally, stratification 
can substitute for direct control in observational studies. 

 A stratified sample cannot be a simple random sample.  As an example, consider the 
population of 10 letters given below. 

 
Take a sample of size 4 from the population on the left.  The probability that A is in the sample is 

( ) 4
10

P A = .  The probability of the sample ABCF (order does not matter) is ( ) 1
10
4

P ABCF =
⎛ ⎞
⎜ ⎟
⎝ ⎠

.  

In the stratified population on the right, in which two elements are taken from the first row and 

two from the second, the probability that A is in the sample is still ( ) 4
10

P A = .  However, the 

probability of achieving the sample ABCF is  ( ) 0P ABCF = .  Even though the probability of 
any single element being in the sample is the same, all samples of size 4 are not equally likely, 
and thus, this is not a simple random sample.  
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Estimating the Population Mean in a Stratified Sample 
 
Suppose we wish to estimate the yield of 
corn in two counties (A and B) in Iowa.  
County A has AN  acres of corn and 
County B has BN  acres of corn. Here, we 
are assuming that all iN  are sufficiently 
large so that the finite population 
correction factor can be ignored.  The 
counties constitute two strata and we will 
take a simple random sample of size An  
from County A and  Bn   from County B, 
as described in the diagram at right. 
  We want to estimate the total amount of corn for the two counties.  If Ay  is the mean 
yield of corn per acre for the 4 plots in County A and By  is the mean yield of corn per acre for 
the 6 plots in County B, then  

ˆ A A B BN y N yτ = +  
is our estimate of the total amount of corn in the two counties.   
 
 Our estimate of the mean yield of corn per acre for the two counties is 

ˆ A A B B A B
A B

A B

N y N y N Ny y
N N N N

µ +
= = +

+
,  

if we let A BN N N= +  be the total acreage for the two counties.  This estimator can be written 
as a weighted average  

ˆ A A B BW y W yµ = +  with A
A

NW
N

=  and B
B

NW
N

=  

where the weights are the population proportions.  The variance of µ̂  is easily computed 

( ) ( ) ( ) ( )
2 2

2 2 2 2ˆ A B
A A B B A A B B A B

A B

V V W y W y W V y W V y W W
n n
σ σµ = + = + = + . 

 In general, if there are L strata of size iN  with 
1

L

i
i

N N
=

=∑  with samples of size in  with 

1

L

i
i

n n
=

=∑  taken from each strata, respectively, then: 

• the estimator of the total is 
1

ˆ
L

i i
i

N yτ
=

=∑ . 

• the estimator of the mean is 
1

ˆ
L

i
i

i

N y
N

µ
=

=∑  or 
1

ˆ
L

i i
i

W yµ
=

=∑  with i
i

NW
N

=  the population 

proportion. 

We have our estimated mean 
1

L

i i
i

y W y
=

= ∑ , so ( ) ( )
2

2 2

1 1

L L
i

i i i
i i i

V y W V y W
n
σ

= =

= =∑ ∑ . 
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This last expression can be rewritten using sample proportions as weights i
i

nw
n

= .  So, 

( )
2 2

1

L
i i

i i

WV y
n w
σ

=

=∑ . 

 
The Problems of Sample Size and Allocation 
 
 Suppose we want to estimate the mean yield of corn to within 100 bushels/acre.  How 
can we use the equations above to determine the appropriate sample size n and the allocations 

in  to produce an estimate accurate to a specified tolerance?   We will, as usual,  use 

( )2 V y B=  as our margin of error.  We require values of n and  in  so that ( )
2

4
BV y D= =  

(called the dispersion).  Then 
2 2

1

1 L
i i

i i

WD
n w

σ
=

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
∑  and consequently,  

2 2

1

1 L
i i

i i

Wn
D w

σ
=

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
∑ , 

with 
2

4
BD =  when estimating µ  and 

2

24
BD
N

=  when estimating τ . 

 

We know that i
i

NW
N

=  are population proportions.  However, in order to find n we must know 

the weights iw .   
 
 One method for determining the sample proportions iw  is to simply assign them the 

same values as the population proportions, so i
i i

Nw W
N

= = .  This method is particularly useful 

when the variances of the strata are similar.   
 
 Another standard procedure is to use the weights that minimize the variance.  Consider 
the case when two strata are used.  Then  

( )
2 2 2 2 2 2

1 1 2 2 1 2

1 2 1 1

W W k kV y
n n n n n
σ σ

= + = +
−

 where 2 2 2
i i ik W σ=  is a constant. 

 
Now, to find the value of 1n  that minimizes ( )V y , we use calculus.  So,  

( )

2 2 2 2
1 2 1 2

22
1 1 1 1 1

0d k k k k
dn n n n n n n

⎛ ⎞ −
+ = + =⎜ ⎟− −⎝ ⎠

. 

Solving for 1n , we have 

( )

2 2
2 1

2 2
11

k k
nn n

=
−

 or 
2 2
1 1
2 2
2 2

n k
n k

= , so 1 1 1 1

2 2 2 2

n k W
n k W

σ
σ

= = . 
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Then 2 1 2
1 2 1 1 1

1 1

k k kn n n n n n
k k

⎛ ⎞+
= + = + = ⎜ ⎟

⎝ ⎠
.  Solving for 1n , we have 1

1
1 2

kn n
k k

⎛ ⎞
= ⎜ ⎟+⎝ ⎠

.  

In general, we have 

1 1

i i i
i L L

i i i
i i

k Wn n n
k W

σ

σ
= =

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟= =
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
∑ ∑

. 

 This last equation indicates that the allocation to region i will be large if i
i

NW
N

=  is 

large, that is, if it contains a large portion of the population.  This should make sense.  It also 
indicates that the allocation to region i will be large if there is a lot of variability in the region.  
If there is little variation in the region, the allocation will be small, since a small sample will 
give the necessary information.  As an extreme example, if there is no variation in a region, a 
single sample will tell you everything about the region.  This optimal allocation was developed 
by the statistician Jerzy Neyman and is called the Neyman allocation. 
 
Example 1.    Consider the two counties A and B with 5000AN =  acres and 9000BN =  acres.  
Suppose we can approximate the variance of the yields for  the two counties based on past 
performance as 12Aσ ≈  bushels/acre and 20Bσ ≈  bushels/acre.  We want to estimate the mean 
yield in bushels per acre for the two counties with a margin of error of 5 bushels/acre.  What 
are the values of n, An , and Bn  if 
a)   we use proportional allocation 
b)   we allocate samples to minimize the variance (optimal allocation)  
 

a) Here we have 5
9

A A

B B

n N
n N

= = .  This means that 5
14An n=  and 9

14Bn n=  and 

5
14

A
A

nw
n

= =  with 9
14Bw = .  Using the formula derived above,  

2 2 2 2 2 2

1

1 1L
i i A A B B

i i A B

W W Wn
D w D w w

σ σ σ
=

⎡ ⎤ ⎡ ⎤
= = +⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦
∑ , 

we can find the appropriate values of n, An , and Bn .   We know everything except D.  To find 

D, we have 5B = , so 
2 25

4 4
BD = = .   

 Now,  

( ) ( )
2 2

2 25 912 20
4 14 14 50

5 925
14 14

n

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥= + ≈
⎢ ⎥⎛ ⎞ ⎛ ⎞

⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

 

So proportional allocation gives 50n = , 5 50 18
14An ⎛ ⎞= ≈⎜ ⎟
⎝ ⎠

 and 9 50 32
14Bn ⎛ ⎞= ≈⎜ ⎟
⎝ ⎠

. 
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b) Optimal allocation requires that  

( )
( )

( ) ( )

5 12
114

5 9 412 20
14 14

A A
A

A A B B

Wn n n n
W W

σ
σ σ

⎛ ⎞
⎜ ⎟⎛ ⎞ ⎝ ⎠= = =⎜ ⎟+ ⎛ ⎞ ⎛ ⎞⎝ ⎠ +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

 

and 

( )
( )

( ) ( )

9 20
314

5 9 412 20
14 14

B B
B

A A B B

Wn n n n
W W

σ
σ σ

⎛ ⎞
⎜ ⎟⎛ ⎞ ⎝ ⎠= = =⎜ ⎟+ ⎛ ⎞ ⎛ ⎞⎝ ⎠ +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

. 

As before,  
 

2 2 2 21 A A B B

A B

W Wn
D w w

σ σ⎡ ⎤
= +⎢ ⎥

⎣ ⎦
, 

and so,   

( ) ( )
2 2

2 25 912 20
4 14 14 47

1 325
4 4

n

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥= + ≈
⎢ ⎥⎛ ⎞ ⎛ ⎞

⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

 

 

So proportional allocation gives 47n = , 1 47 12
4An ⎛ ⎞= ≈⎜ ⎟

⎝ ⎠
 and 3 47 35

4Bn ⎛ ⎞= ≈⎜ ⎟
⎝ ⎠

. 

 Notice that, although fewer samples were needed, more samples came from County B, 
since it had both greater variation and was a larger proportion of the population. 
 
Considering Cost and Finite Population Factor 
 
 The equations developed in this section become somewhat more complex if the finite 
population correction factor must be included in the calculations.  In this case, we have 

2
2

1

2 2

1

L
i

i
i i

L

i i
i

N
wn

N D N

σ

σ

=

=

=
+

∑

∑
 with 

2

4
BD =  when estimating µ  and 

2

24
BD
N

=  when estimating τ . 

 
The approximate allocation that minimizes total cost for a fixed variance, or minimizes 

variance for a fixed costs ( ic ) is 

1

i i

i
i L

k k

k k

N
c

n n
N

c

σ

σ
=

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠
∑

.  Note that in  is directly proportional to 

iN  and iσ  and inversely proportional to ic . 
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Comparison of Stratified Random Sampling to Simple Random Sampling 
 
 Stratification usually produces gains in precision, especially if the stratification is 
accomplished through a variable correlated with the response.  We would like to stratify 
when the strata are homogeneous and different, that is, we have  
 1) low variation in the strata  
 2) differing means among the strata. 
 
The following comparisons apply for situations in which the iN  are all relatively large, so we 

can replace 1
1iN −

 with 1

iN
.  Here we use nf

N
=  and i

i
NW
N

= . 

 The variance of a SRS, denoted SRSV , compared to the variance of a proportional 
allocation, denoted propV  is described in the equation 

( )21
SRS prop i i

i

fV V W Y Y
n
−

− = −∑ . 

 From this equation, we see that the proportional allocation will be useful (produce a 
smaller variance than SRS) when there is a large difference in the means for the different 
strata. 
 
 The variance of proportional allocation compared to the variance of an optimal 
Neyman allocation, denoted optV  is described in the equation 

( )21
prop opt i i

i
V V W S S

n
− = −∑ , 

where iS  is a measure of the random variation of the population strata and i i
i

S W S=∑ .  

From this equation, we see that the optimal allocation is an improvement over proportional 
allocation when there is a large difference in the variation among the strata. 
 
 In summary, one should attempt to construct strata so that the strata means differ.  If 
strata variances do not differ much, use proportional allocation.  If strata variances differ 
greatly, use optimum Neyman allocation. 
 
A Word on Post Stratification 
 
 At times, we wish to stratify a sample after a simple random sample has been taken.  
For example, suppose you wish to stratify on gender based on a telephone poll, where you 
can’t know the gender of the respondent until after the SRS is taken.  What penalty do we 
pay if we decide to stratify after selecting a simple random sample?  It is possible to show 
that the estimated variance, ( )ˆ

pV y , is given by  
 

( ) ( )2 2
2

1 1

1ˆ 1
L L

p i i i i
i i

N nV y W s W s
Nn n= =

−⎛ ⎞= + −⎜ ⎟
⎝ ⎠

∑ ∑ . 
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The first term is what you would expect from a stratified sample mean using proportional 
allocation, so the second term is the price paid for stratifying after the fact.  Notice that the term 

2

1
n

 reduces the penalty as n increases.  Post-stratification produces good results when n is large 

and all in  are large as well. 
 
Ratio Estimation 
 
 Ratio estimation is an important issue in cluster sampling.  We will develop the 
principles of ratio estimation and then proceed to cluster sampling. 
 
How do you determine the mpg for your car?  One way would be to note the miles driven 
and the number of gallons of gas used each time you fill up the gas tank.  This will produce a 
set of ordered pairs, each of which can be used to estimate your mpg.  What is the best 
estimate you can make from this information? 
 

miles 1y 2y 3y L ny

gallons 1x  2x  3x  L nx  
 

We can compute all n ratios i

i

y
x

  and find the average value 1 i

i

y
n x

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑ .  Unfortunately, 

yi

i x

yE
x

µ
µ

⎛ ⎞
≠⎜ ⎟

⎝ ⎠
.  Each division of i

i

y
x

 produces some bias, so we want to perform as few 

divisions as possible.   

 The best estimator of the population ratio y

x

R
µ
µ

=  is 1

1

n

i
i
n

i
i

y
yr
xx

=

=

= =
∑

∑
.  

The estimated variance of r can be approximated by 
 

( )
2

1
2

1

1ˆ ˆ

n

i
i r
n

x
i

i

y
N n sV r V

N nx µ
=

=

⎛ ⎞
⎜ ⎟ ⎛ ⎞⎛ ⎞−⎛ ⎞⎜ ⎟= = ⎜ ⎟⎜ ⎟⎜ ⎟
⎜ ⎟ ⎝ ⎠ ⎝ ⎠⎝ ⎠
⎜ ⎟
⎝ ⎠

∑

∑
, 

where 
( )2

2 1

1

n

i i
i

r

y rx
s

n
=

−
=

−

∑
.  The estimated variance of r is similar to the formula for the 

variance of a sample mean, but has the additional 2

1

xµ
⎛ ⎞
⎜ ⎟
⎝ ⎠

 term.  The value of 2
rs  is similar to 

the variance of residuals.   
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 If we plot the ordered pairs ( ),i ix y , we are comparing these points to the line y r x= . 
 
 Our estimate of the ratio r allows us to make estimates of the population mean, ˆ yµ , 

and the population total, ˆyτ .   If y

x

µ
µ

 is estimated by y
x

, then we should be able to estimate 

yµ  with ˆ y x x
y r
x

µ µ µ= = .  The estimated variance of yµ  is ( ) ( )
2

2ˆ ˆˆ r
y x

N n sV V r
N n

µ µ −⎛ ⎞= = ⎜ ⎟
⎝ ⎠

. 

Similarly, the ratio estimator of the population total, yτ , is ˆy x x
y r
x

τ τ τ= = . 

The estimated variance of yτ  is  

( ) ( )
2

2 2
2

1ˆ ˆˆ r
y x x

x

N n sV V r
N n

τ τ τ
µ

⎛ ⎞−⎛ ⎞= = ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

. 

Note that we do not need to know xτ  or N to estimate yµ  when using the ratio procedure.  
However, we must know xµ . 
 
Example (Adapted from Scheaffer, et al, Elementary Survey Sampling, 5th Edition, page 205-206): 
 In Florida, orange farmers are paid according to the sugar content in their oranges.  
How much should a farmer be paid for a truckload of oranges?  A sample is taken, and the 
total amount of sugar in the truckload can estimated using the ratio method.   
 
 Suppose 10 oranges were selected at random from the truckload to be tested for sugar 
content.  The truck was weighed loaded and unloaded to determine the weight of the oranges.  
In this case, there were 1800 pounds of oranges.  Larger oranges have more sugar, so we 
want to know the sugar content per pound for the truckload and use this to estimate the total 
sugar content of the load.   
 

Orange 1 2 3 4 5 6 7 8 9 10 
Sugar Content (lbs) 0.021 0.030 0.025 0.022 0.033 0.027 0.019 0.021 0.023 0.025
Wt of Orange (lbs) 0.40 0.48 0.43 0.42 0.50 0.46 0.39 0.41 0.42 0.44 

 
The scatterplot above shows a strong linear 
relationship between the two variables, so a 
ratio estimate is appropriate.  Using the 

formula ˆy x x
y r
x

τ τ τ= =  we estimate  

( ) ( )( )0.0246ˆ 1800 0.05655 1800 101.8
0.4350yτ = = =  

Pounds of sugar in the truckload.  A bound 
on the error of estimation can be found as 
well.    
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 We have ( ) ( )
2

2 2
2

1ˆ ˆˆ r
y x x

x

N n sV V r
N n

τ τ τ
µ

⎛ ⎞−⎛ ⎞= = ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

, but in this case, we know neither N 

nor xµ .  Since N is large (a truckload of oranges will be at least 4,000 oranges), so the finite 

population correction N n
N
−⎛ ⎞

⎜ ⎟
⎝ ⎠

 is essentially 1.  We will use x  as an estimate of xµ .   With 

these modifications, we can compute  
 

( ) ( )
2 2

22
2 2

1 1 0.0024ˆ ˆ2 2 2 1800 6.3
0.435 10

r
y x

sV
x n

τ τ ⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
Our estimate of the total sugar content of the truckload of oranges is 101.8 6.3±  pounds.   
 
 If the population size N is know, we could also use the estimator N y  instead of xrτ  
to estimate the total.  Generally, the estimator xrτ  has a smaller variance than N y  when 
there is a strong positive correlation between x and y.  As a rule of thumb, if 1

2ρ > , the ratio 
estimate should be used. This decrease in variance results from taking advantage of the 
additional information provided by the subsidiary variable x in our calculations with the ratio 
estimation.   
 
Relative Efficiency of Estimators 
 
 Suppose there are two unbiased (or nearly unbiased) estimators, 1E  and 2E , for the 
same parameter.  The relative efficiency of the two estimators is measured by the ratio of the 
reciprocals of their variances.  That is,  

( )
( )

21

2 1

V EERE
E V E

⎛ ⎞
=⎜ ⎟

⎝ ⎠
. 

If 1

2

1ERE
E

⎛ ⎞
>⎜ ⎟

⎝ ⎠
, estimator 1E  will be more efficient.  If the sample sizes are the same, the 

variance of 1E  will be smaller.  Another way to view this is that estimator 1E  will produce 
the same variance as 2E  with a smaller sample size.  
 
 We can compute the relative efficiency of yµ  and y .  Here, we have  

� ( )
( )

2

2

ˆ
ˆ

y y

ry

sV y
RE

y sV
µ

µ
⎛ ⎞

= =⎜ ⎟
⎝ ⎠

. 

 
 Both variances have the same values of N and n, so the finite population correction 
factor divides out.  The variance of ˆ yµ  can be re-written in terms of the predicted correlation 
ρ̂  so that  
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�
2

2 2 2

ˆ
ˆ2

y y

y x x y

s
RE

y s r s r s s
µ

ρ
⎛ ⎞

=⎜ ⎟ + −⎝ ⎠
. 

 

If �
ˆ

1yRE
y
µ⎛ ⎞

>⎜ ⎟
⎝ ⎠

 then ˆ yµ  is a more efficient estimator.  To determine when �
ˆ

1yRE
y
µ⎛ ⎞

>⎜ ⎟
⎝ ⎠

, we 

consider 
2

2 2 2 1
ˆ2

y

y x x y

s
s r s r s sρ

>
+ −

.  Then 2 2 2 2 ˆ2y y x x ys s r s r s sρ> + − , or  2ˆ2 x y xs s r sρ > .   If 0ρ > , 

then 
2 1ˆ

2 2

x

y

s
xx

s
yx y

r s
s s

ρ
⎛ ⎞

> = ⎜ ⎟⎜ ⎟
⎝ ⎠

.  As is often the case in ratio estimation, yx ss
x y
≈ , we see that ˆ yµ  is 

a more efficient estimator than y  when 1ˆ
2

ρ > . 

 
Cluster Sampling 
 

Sometimes it is impossible to develop a frame for the elements that we would like to 
sample.  We might be able to develop a frame for clusters of elements, though, such as city blocks 
rather than households or clinics rather than patients.  If each element within a sampled cluster is 
measured, the result is a single-stage cluster sample.  A cluster sample is a probability sample in 
which each sampling unit is a collection, or cluster, of elements.  Cluster sampling is less costly 
than simple or stratified random sampling if the cost of obtaining a frame that lists all population 
elements is very high or if the cost of obtaining observations increases as the distance separating 
the elements increases. 

To illustrate, suppose we wish to estimate the average income per household in a large city.  
If we use simple random sampling, we will need a frame listing all households (elements) in the 
city, which would be difficult and costly to obtain. We cannot avoid this problem by using 
stratified random sampling because a frame is still required for each stratum in the population.  
Rather than draw a simple random sample of elements, we could divide the city into regions such 
as blocks (or clusters of elements) and select a simple random sample of blocks from the 
population. This task is easily accomplished by using a frame that lists all city blocks. Then the 
income of every household within each sampled block could be measured.  

Cluster sampling is an effective design for obtaining a specified amount of information at 
minimum cost under the following conditions: 

1.  A good frame listing population elements either is not available or is very costly to obtain, 
while a frame listing clusters is easily obtained. 
 
2.  The cost of obtaining observations increases as the distance separating the elements 
increases. 

Elements other than people are often sampled in clusters. An automobile forms a nice 
cluster of four tires for studies of tire wear and safety. A circuit board manufactured for a 
computer forms a cluster of semiconductors for testing. An orange tree forms a cluster of oranges 
for investigating an insect infestation. A plot in a forest contains a cluster of trees for estimating 
timber volume or proportions of diseased trees.  
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Notice the main difference between the optimal construction of strata and the construction 
of clusters. Strata are to be as homogeneous (alike) as possible within, but one stratum should 
differ as much as possible from another with respect to the characteristic being measured. Clusters, 
on the other hand, should be as heterogeneous (different) as possible within, and one cluster should 
look very much like another in order for the economic advantages of cluster sampling to pay off. 

 
Estimation of a Population Mean and Total  

Cluster sampling is simple random sampling with each sampling unit containing a 
collection or cluster of elements. Hence, the estimators of the population mean µ  and total τ  are 
similar to those for simple random sampling. In particular, the sample mean y  is a good 
estimator of the population mean µ .   The following notation is used in this section: 

 
N =  the number of clusters in the population 

n  =  the number of clusters selected in a simple random sample  

im  = the number of elements in cluster i, i = 1, . . . , N 

m  = 
1

1 n

i
i

m
n =
∑ = the average cluster size for the sample  

M  =  
1

n

i
i

m
=
∑  = the number of elements in the population 

M  = M
N

 = the average cluster size for the population 

iy  = the total of all observations in the ith   cluster 

ijy  =  the measure for the jth element in the ith cluster 
 
The estimator of the population mean µ  is the sample mean y , which is given by 

1

1

n

i
i
n

i
i

y
y

m

=

=

=
∑

∑
. 

Since both iy  and im  are random variables, y  is a ratio estimator, so the formulas 
developed earlier will apply.  We simply replace ix  with im .  
 
The estimated variance of  y  is 

( )
2

2

1ˆ rN n sV y
N M n

⎛ ⎞−⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠

  

where  
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( )2

2 1

1

n

i i
i

r

y ym
s

n
=

−
=

−

∑
. 

 
If M  is unknown, it can be estimated by m .  This estimated variance is biased and will be a 
good estimate of ( )V y  only if n is large.  A rule of thumb is to require 20n ≥ .  The bias 
disappears if all im  are equal. 
 
Example 8.2 (Scheaffer, et al, page 294) 

A city is to be divided into 415 clusters.  Twenty-five of the clusters will be sampled, and 
interviews are conducted at every household in each of the 25 blocks sampled. The data on 
incomes are presented in the table below. Use the data to estimate the per-capita income in the 
city and place a bound on the error of estimation. 
 

Cluster 
i 

Number of 
Residents, 

im  

Total 
income 

per cluster,

iy  

 
Cluster 

i 

Number of 
Residents, 

im  

Total 
income 

per cluster, 

iy  

1 8 $96,000 14 10 $49,000 
2 12 121,000 15 9 53,000 
3 4 42,000 16 3 50,000 
4 5 65,000 17 6 32,000 
5 6 52,000 18 5 22,000 
6 6 40,000 19 5 45,000 
7 7 75,000 20 4 37,000 
8 5 65,000 21 6 51,000 
9 8 45,000 22 8 30,000 

10 3 50000 23 7 39,000 
11 2 85,000 24 3 47,000 
12 6 43.000 25 8 41,000 
13 5 54,000    

 

Here we have 
1

151
n

i
i

m
=

=∑ ,  
1

1,329,000
n

i
i

y
=

=∑ , and 25,189rs = . 

Solution:  The best estimate of the population mean µ  is $1,329,000 $8801
151

y = = . The 

estimate of per capita income is $8801.   Since M is not known, M  must be estimated by 

1 151 6.04
25

n

i
i

m
m

n
== = =
∑

.  Since there were at total of 415 clusters, 415N = .  So, 
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( )
2 2

2 2

1 415 25 1 25189ˆ 653,785
415 6.04 25

rN n sV y
N M n

⎛ ⎞ ⎛ ⎞− −⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞= = =⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠ ⎝ ⎠

 

 
Thus, the estimate of  µ  with a bound on the error of estimation is given by 
 

( )ˆ2 8801 2 653,785 8801 1617y V y± = ± = ±  
 

The best estimate of the average per-capita income is $8801, and the error of estimation 
should be less than $1617 with probability close to 0.95. This bound on the error of estimation 
is rather large; it could be reduced by sampling more clusters and, consequently, increasing the 
sample size. 

 
Comparing Cluster Sampling and Stratified Sampling 
 

 It is advantageous to use a cluster sample when the individual clusters contain as 
much within cluster variability as possible, but the clusters themselves are as similar as 
possible.  This can be seen in the computation of the variation,  
 

( ) ( )2 22

2 1 1

1 1

n n

i i i i
i i

r

y ym m y y
s

n n
= =

− −
= =

− −

∑ ∑
, 

 

which will be small when the iy ’s are similar in value.  For cluster sampling, the differences are 
found within the clusters and the similarity between the clusters. 
 It is advantageous to use stratified sampling when elements within each strata are as 
similar as possible, but the strata themselves are as different as possible.  Here, the  differences 
are found between the strata and the similarity within the strata.  Two examples will help 
illustrate this distinction.   
 

Example 1 Suppose you want to take a sample of a large high school and you must use 
classes to accomplish your sampling.  In this school, students are randomly assigned to 
homerooms, so each homeroom has a mixture of students from all grade-levels (Freshman-
Senior).   Also, in this school, the study halls are grade-level specific, so all of the students in a 
large study hall are from the same grade.  If you believe that students in the different grade-levels 
will have different responses, you want to be assured that each grade-level is represented in the 
sample.    
 You could perform a cluster sample by selecting n homerooms at random and surveying 
everyone in those homerooms.  You would not use the homerooms as strata, since there would 
be no advantage over a simple random sample.  
 You could perform a stratified sample using study halls as your strata.  Randomly select k 
students from study halls for each grade-level.   Study halls would make a poor cluster, since the 
responses from all of the students are expected to be similar. 
 
Example 2 We would like to estimate the number of diseased trees in the forest 
represented below.  The diseased trees are indicated with a D, while the trees free of disease 
are represented by F.  Consider the rows and columns of the grid. 
 

(a) If a cluster sample is used, should the rows or columns be used as a cluster? 
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(b) If a stratified sample is used, should the rows or columns be used as strata? 
 

Row C1 C2 C3 C4 C5
1 F F F D D 
2 F F D D D 
3 F F F F F 
4 F F D F D 
5 F F F F D 
6 D F D F F 
7 F F D F D 
8 F D D F D 
9 F F F D D 

10 F F F D D 
11 F F F D F 
12 F D D D D 
13 F D F D D 
14 F F F D D 
15 F D F D D 
16 F F D D D 
17 F F D D D 
18 F F F D D 
19 F F D D D 
20 F F F F F 
21 D F F D F 
22 F D F F D 
23 F F D D F 
24 F F F D D 
25 F F F D D 
26 F D F F D 
27 F F D F D 
28 D F F F D 
29 F F F F D 
30 F F D D D 

 
 It appears that there are more diseased trees in the right-most columns, however, there 
does not appear to be a difference among the rows.  If we wanted a sample of size 25, we could 
obviously select a simple random sample, but we might miss the concentration of diseased trees 
in C4 and C5 just by chance.  We want to insure that C4 and C5 show up in the sample.    We 
have two choices: 

• For a cluster sample, we should use the rows as clusters.  We could select 5 rows at 
random, and consider every tree in each of those clusters (rows).    

 

• For a stratified sample, we could use the columns as strata.  We would select 5 elements 
from each of the 5 strata (columns) to consider.   
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Systematic Sampling 
 

 Suppose the population elements are on a list or come to the investigator sequentially.  It is 
convenient to find a starting point near the beginning of the list and then sample every kth element 
thereafter.  If the starting point is random, this is called a 1-in-k systematic sample.   
 If the population elements are in random order, systematic sampling is equivalent to simple 
random sampling.  If the population elements have trends or periodicities, systematic sampling may be 
better or worse than simple random sampling depending on how information on population structure is 
used.  Many estimators of variance have been proposed to handle various population structures.   
Repeated Systematic Sampling 
 In the 1-in-k systematic sample, there is 
only one randomization, which limits the 
analysis.  The randomness in the systematic 
sample can be improved by choosing more than 
one random start.  For example, instead of 
selecting a random number between 1 and 4 to 
start and then picking every 4th element, you 
could select  

2 numbers at random between 1 and 8, and then selecting those elements in each group of 8. 
 
Relationship to Stratified and Cluster Sampling 
 Recall that if the elements are in random order, we have no problem with systematic sampling.  If 
there is some structure to the data, as shown below, we can compare systematic sampling to stratified and 
cluster samples.   
 
Systematic sampling is closely related to 

• stratified sampling with one sample element per stratum 
• cluster sampling with the sample consisting of a single cluster 

 As a stratified sample, we think of having 4 different strata, each with 5 elements.  The elements 
of the strata are similar and the means of the strata are different, so this fits the requirements for a 
stratified sample.  We take one element from each stratum (in this illustration, the second in each 
stratum).  We have lost some randomness, since the second item is taken from all strata rather than a 
random element from each stratum.   
 As a cluster sample, we think of the 5 possible clusters.  Cluster 1 contains all of the first 
elements,  cluster 2 (the one selected) contains all the second elements, etc.  Here we have surveyed all 
elements in one cluster (cluster 2).  In this case, the clusters contain as much variation as possible with 
similar means, so the cluster process is appropriate.   Since we have only one cluster, we have no estimate 
of the variance.  A repeated systematic sample (taking clusters 2 and 5, for example) would eliminate this 
difficulty.   
          If the structure of the data is periodic, 
it is important that the systematic sample 
not mimic the periodic behavior.  In the 
diagram below, the circles begin at the 3rd 
element and select every 8th element.  Since 
this matches closely the period of data, we 
select only values in the upper range.  If we 
begin at the 3rd element and select every 5th 
element, we are able to capture data across 
the full range.   
 


